Notícias

16/04/24 |   Estudos socioeconômicos e ambientais  Florestas e silvicultura  Pesquisa, Desenvolvimento e Inovação  Gestão ambiental e territorial  Automação e Agricultura de Precisão

Metodologia com inteligência artificial identifica espécies florestais de valor comercial

Informe múltiplos e-mails separados por vírgula.

Foto: Mauricilia Silva

Mauricilia Silva - Acompanhamento em tempo real de voo de drone no mapeamento florestal

Acompanhamento em tempo real de voo de drone no mapeamento florestal

  • Tecnologia reúne um conjunto de algoritmos treinados para reconhecer espécies florestais, aumentando a precisão e a eficiência do manejo.
  • Com árvores como castanheira, cumaru-ferro, açaí e cedro, o índice de acerto já alcança 95%.
  • A adoção de ferramentas de IA é capaz de reduzir os custos do mapeamento florestal de cerca de R$ 140 reais por hectare para aproximadamente R$ 6.
  • Metodologia pode aumentar até 100 vezes a capacidade de mapeamento da área inventariada, em relação ao método tradicional.
  • O banco de dados de treinamento de algoritmos é resultado de levantamento em mais de 40 mil hectares de floresta no Acre, Rondônia e Sul do Amazonas, com uso de drones.
  • A meta da Embrapa é mapear 80 mil hectares de floresta, com inserção de novas áreas de interesse comercial na Amazônia.

 

O Netflora, metodologia desenvolvida pela Embrapa, reúne um conjunto de algoritmos treinados com inteligência artificial (IA) para reconhecer espécies florestais. Realizado com base em características botânicas, disponíveis em um banco de dados, esse aprendizado permite identificar árvores de interesse comercial e indicar a sua localização exata na floresta. Espécies como castanheira, cumaru-ferro, açaí e cedro são reconhecidas com índices de acerto de 95%, resultado que reduz custos de produção e torna mais sustentável o manejo de florestas na Amazônia. 

De acordo com o pesquisador da Embrapa Acre Evandro Orfanó (foto à esquerda), um dos coordenadores desses estudos, o Netflora confere maior automação ao planejamento da atividade florestal e aumenta a precisão e eficiência na execução de planos de manejo. “Uma vez treinado e especializado, o algoritmo também fornece métricas, como diâmetro e área de copa, que possibilitam estimar, por meio de equações alométricas (que relacionam formas e tamanhos), o volume de madeira de cada árvore. Essas ferramentas tecnológicas contribuem para o aumento da produção florestal com conservação ambiental”, afirma.

As pesquisas para viabilizar o uso de inteligência artificial no setor florestal são desenvolvidas pela Embrapa desde 2015 e contemplam diferentes aspectos da atividade. Na fase atual, os estudos acontecem por meio do projeto Geotecnologias aplicadas à automação florestal e espacialização dos estoques de carbono em uso nativo e modificado da terra na Amazônia Ocidental (Geoflora), executado no Acre, Rondônia, Roraima, Amapá, Pará e Amazonas, em parceria com o Fundo JBS pela Amazônia.

A adoção dessas tecnologias implica investimentos em computadores, drones, baterias e estrutura adequada de escritório. Segundo Orfanó, esse gasto inicial é compensado pela redução drástica nos custos de produção, especialmente na etapa do inventário florestal. Para se ter uma ideia, no levantamento tradicional de espécies, com equipes em campo, um hectare de floresta mapeado tem custo estimado entre R$ 100 e R$ 140, enquanto com a metodologia Netflora esse valor cai para R$ 4 a R$ 6.

Ele enfatiza que essa redução é proporcionada pela agilidade na obtenção e processamento de informações sobre a área a ser manejada. “Uma empresa florestal que utiliza o manejo tradicional consegue mapear até 10 mil hectares de floresta por ano. Com o uso de IA, o ganho em capacidade operacional pode saltar para até um milhão de hectares no mesmo período”, acrescenta.

Foto: Caio Alexandre Santos

Resultados validados

Para construir o banco de dados de treinamento de algoritmos, foram mapeados mais de 40 mil hectares de floresta, em 37 sítios (áreas) do Acre, Rondônia e sul do Amazonas, com uso de drones. Em dois anos de estudo foram realizados cerca de mil planos de voos e cada um gerou, aproximadamente, 300 imagens aéreas, que foram tratadas e transformadas em ortofotos (imagens georreferenciadas e de alta resolução). Com base na gama de informações contidas nas ortofotos foram treinados nove algoritmos, com finalidades e performances de acerto distintas. 

“Temos algoritmos que reconhecem uma única espécie florestal, outros têm capacidade para identificar diferentes grupos ou as principais árvores madeireiras e não madeireiras do Acre e outras localidades da Amazônia. Alguns algoritmos já alcançaram alta performance, mas esse aprendizado será contínuo”, salienta Orfanó, que estima a meta de mapeamento do projeto em 80 mil hectares de floresta, com inserção de novas áreas de interesse comercial na Amazônia, para ampliar a construção do banco de dados.

Ainda de acordo com o especialista, na medida em que aumentar o conhecimento sobre a floresta, será possível intensificar o aprendizado dos algoritmos treinados e habilitar novos algoritmos, por grupo de espécies, conforme demandas regionais. 

 

Lançamento no 51º aniversário da Embrapa

As duas primeiras versões dos algoritmos treinados serão lançadas em 25 de abril de 2024, durante as comemorações do aniversário de 51 anos da Embrapa. Um algoritmo tem capacidade para reconhecimento do açaí solteiro (Euterpe precatoria Mart.) nas fases produtiva (com cachos) e não produtiva, no Acre. O outro, além do açaí solteiro , é capaz de reconhecer mais nove espécies de palmeiras da Amazônia (paxiúba, buriti, jaci, ouricuri, murmuru, tucumã, inajá, patauá e bacaba).

Até fevereiro de 2025, serão disponibilizados outros sete algoritmos, com capacidade para identificar espécies madeireiras e não madeireiras, em diferentes localidades amazônicas.  A agenda de lançamentos também inclui algoritmos para o reconhecimento de espécies em sistemas agroflorestais (SAFs) e para a atividade de monitoramento ambiental.

Foto: Felipe Sá

Aprendizagem dos algoritmos 

As imagens aéreas coletadas no trabalho de pesquisa são processadas e transformadas em ortofotos no Laboratório de Geotecnologias da Embrapa Acre. A partir das informações das ortofotos, o treinamento dos algoritmos ocorre por meio de uma rede neural artificial (método de inteligência artificial que ensina computadores a processar dados de uma forma inspirada pelo cérebro humano), composta por filtros que extraem dessas imagens de alta resolução informações relevantes do objeto de interesse e apresenta ao algoritmo.

O engenheiro florestal Mauro Alessandro Karasinski, doutorando na Universidade Federal do Paraná (UFPR) e membro da equipe de criação do Netflora, explica que durante o aprendizado o algoritmo aprende padrões de copa das árvores (formato, tamanho, borda, textura e intensidade de cores das folhas de acordo com a época do ano) e organiza essas informações para reconhecer as características aprendidas, em imagens de novas áreas mapeadas. Essa prática é conhecida como predição, ou seja, a capacidade do algoritmo de IA prever e estimar a localização de um objeto-alvo e determinar o tipo de classe a que pertence.

“Como resultado do aprendizado, é disponibilizado um shapefile (arquivo vetorial com a identificação e localização de cada espécie e indicação do grau de certeza), que permite elaborar o inventário florestal com o número de árvores existentes, por classe ou gênero e outras informações das espécies e da área mapeada”, ressalta. 

Como utilizar a metodologia

De livre acesso, o Netflora está disponível no repositório do GitHub e pode ser facilmente executado por meio de um Notebook Colab simplificado (plataforma colaborativa aberta e gratuita, hospedada na nuvem do Google). A metodologia é dirigida a empresas do setor florestal, profissionais de instituições de ensino superior, associações agroextrativistas e órgãos ambientais que demandam informações sobre inventário florestal e monitoramento pericial de ecossistemas florestais na Amazônia, entre outros públicos.

O uso da metodologia não demanda conhecimentos especializados; entretanto, a partir do seu lançamento, o passo a passo para sua adoção poderá ser conferido no curso Netflora na Prática: Guia para detecção de espécies florestais a partir de imagens de drones e inteligência artificial, de acesso gratuito, na plataforma e-Campo, ambiente de aprendizagem virtual da Embrapa. Para mais informações sobre como utilizar os algoritmos treinados, acesse a página do Netflora.

 

Potencial de uso 

Cada algoritmo do Netflora possibilita incontáveis combinações de treinamento. Além de conferir maior agilidade à etapa de inventário florestal, a metodologia pode fornecer informações para estimar a produção e aperfeiçoar técnicas em planos de manejo e contribuir para ajustar estratégias de colheita para espécies não madeireiras.

Outra classe de algoritmos será capaz de reconhecer pilhas de toras, madeira serrada e clareiras abertas por evento climático ou provocadas pelo homem, entre outras ações no ambiente florestal. “Também estão em treinamento algoritmos aptos a estabelecer correlações entre aspectos da morfologia de copa das árvores com estoques de carbono na floresta. Esse conhecimento poderá auxiliar nas avaliações sobre os efeitos das mudanças climáticas na dinâmica de clareira naturais”, observa Orfanó. 

Para Andreia Azevedo, diretora do Fundo JBS pela Amazônia, ainda existe pouca orientação na exploração sustentável de produtos florestais e as tecnologias com IA podem contribuir para a melhoria da gestão do manejo de florestas e conservação da Amazônia. “A metodologia Netflora vai possibilitar um avanço no planejamento e coleta de dados precisos em grandes áreas manejadas. Um sistema de manejo eficiente torna a atividade florestal mais produtiva, reduz impactos sobre os ecossistemas e facilita a vida dos extrativistas e outros atores envolvidos com o setor”, destaca.

Algoritmo castanheira

Entre as espécies não madeireiras com potencial econômico na região amazônica, contempladas pela pesquisa com IA, está a castanha-do-brasil (Bertholletia excelsa). Parte do banco de dados para treinamento desse algoritmo foi possibilitada pelo estudo Comportamento fenológico de espécies florestais detectado por sistemas aéreos não tripulados, realizado entre 2017 e 2019, em parceria com a Universidade Federal do Acre (Ufac). A pesquisa gerou mais de 3 mil imagens de castanhais, acervo que já permite margem de acerto do algoritmo entre 92% e 95%, no reconhecimento da espécie.

Segundo Erica Mendonça dos Santos, engenheira florestal e mestranda na Ufac, que coordenou o estudo e participa do projeto Geoflora, as imagens feitas com drones capturam de forma eficiente as alterações nas copas das castanheiras, decorrentes de mudanças nas fases produtiva e vegetativa, em épocas distintas do ano. “Essas informações, validadas por fotografias das árvores, produzidas em terra, foram valiosas para o aperfeiçoamento do algoritmo para reconhecimento da espécie. O mapeamento de castanhais com uso de IA possibilitará identificar novas árvores para a coleta de frutos, aspecto que pode melhorar a produtividade extrativista”, conclui.

 

 

Mauricilia Silva (MTb 429/AC)
Embrapa Acre

Diva Gonçalves (MTb 0148/AC)
Embrapa Acre

Contatos para a imprensa

Telefone: (68) 3212-3250

Mais informações sobre o tema
Serviço de Atendimento ao Cidadão (SAC)
www.embrapa.br/fale-conosco/sac/

Galeria de imagens

Conteúdo relacionado