SciPy and OpenCV as an interactive computing environment for computer vision.

Enter multiple e-mails separated by comma.

imagem

Author(s): SANTOS, T. T.

Summary: In research and development (R&D), interactive computing environments are a frequently employed alternative for data exploration, algorithm development and prototyping. In the last twelve years, a popular scientific computing environment flourished around the Python programming language. Most of this environment is part of (or built over) a software stack named SciPy Stack. Combined with OpenCV?s Python interface, this environment becomes an alternative for current computer vision R&D. This tutorial introduces such an environment and shows how it can address different steps of computer vision research, from initial data exploration to parallel computing implementations. Several code examples are presented. They deal with problems from simple image processing to inference by machine learning. All examples are also available as IPython notebooks.

Publication year: 2015

Types of publication: Journal article

Observation

Some of Embrapa's publications are published as ePub files. To read them, use or download one of the following free software options to your computer or mobile device. Android: Google Play Books; IOS: iBooks; Windows and Linux: Calibre.

 


Access other publications

Access the Agricultural Research Database (BDPA) to consult Embrapa's full library collection and records.
Visit Embrapa Bookstore to purchase books and other publications sold by Embrapa.