SciPy and OpenCV as an interactive computing environment for computer vision.

Informe múltiplos e-mails separados por vírgula.

imagem

Resumo: In research and development (R&D), interactive computing environments are a frequently employed alternative for data exploration, algorithm development and prototyping. In the last twelve years, a popular scientific computing environment flourished around the Python programming language. Most of this environment is part of (or built over) a software stack named SciPy Stack. Combined with OpenCV?s Python interface, this environment becomes an alternative for current computer vision R&D. This tutorial introduces such an environment and shows how it can address different steps of computer vision research, from initial data exploration to parallel computing implementations. Several code examples are presented. They deal with problems from simple image processing to inference by machine learning. All examples are also available as IPython notebooks.

Ano de publicação: 2015

Tipo de publicação: Artigo de periódico

Observações

1 - Por padrão são exibidas publicações dos últimos 20 anos. Para encontrar publicações mais antigas, configure o filtro ano de publicação, colocando o ano a partir do qual você deseja encontrar publicações. O filtro está na coluna da esquerda na busca acima. 

2 - Para ler algumas publicações da Embrapa (apenas as que estão em formato ePub), é necessário ter, no celular ou computador, um desses softwares gratuitos. Sistemas Android: Google Play Livros; IOS: iBooks; Windows e Linux: software Calibre.

 


Acesse outras publicações

Acesse a Base de Dados da Pesquisa Agropecuária (BDPA) para consultar o acervo completo das bibliotecas da Embrapa.