Artificial neural networks for adaptability and stability evaluation in alfalfa genotypes.

Informe múltiplos e-mails separados por vírgula.

imagem

Autoria: NASCIMENTO, M.; PETERNELLI, L. A.; CRUZ, C. D.; NASCIMENTO, A. C. C.; FERREIRA, R. de P.

Resumo: The purpose of this work was to evaluate a methodology of adaptability and phenotypic stability of alfalfa genotypes based on the training of an artificial neural network considering the methodology of Eberhart and Russell. Data from an experiment on dry matter production of 92 alfalfa genotypes (Medicago sativa L.) were used. The experimental design constituted of randomized blocks, with two repetitions. The genotypes were submitted to 20 cuttings, in the growing season of November 2004 to June 2006. Each cutting was considered an environment. The artificial neural network was able to satisfactorily classify the genotypes. In addition, the analysis presented high agreement rates, compared with the results obtained by the methodology of Eberhart and Russell.

Ano de publicação: 2013

Tipo de publicação: Artigo de periódico

Observações

1 - Por padrão são exibidas publicações dos últimos 20 anos. Para encontrar publicações mais antigas, configure o filtro ano de publicação, colocando o ano a partir do qual você deseja encontrar publicações. O filtro está na coluna da esquerda na busca acima. 

2 - Para ler algumas publicações da Embrapa (apenas as que estão em formato ePub), é necessário ter, no celular ou computador, um desses softwares gratuitos. Sistemas Android: Google Play Livros; IOS: iBooks; Windows e Linux: software Calibre.

 


Acesse outras publicações

Acesse a Base de Dados da Pesquisa Agropecuária (BDPA) para consultar o acervo completo das bibliotecas da Embrapa.