Digital soil mapping for soil class prediction in a dry forest of Minas Gerais, Brazil.

Informe múltiplos e-mails separados por vírgula.

imagem

Autoria: DART, R. de O.; VASQUES, G. M.; COELHO, M. R.; FERNANDES, N. F.

Resumo: Investment on soil survey has become scarce over the past decades. Digital Soil Mapping (DSM) techniques emerged as an economic alternative to produce soil maps. We applied a classification tree algorithm to predict soil suborders in a tropical dry forest area with 102 km2 in the north of Minas Gerais state, Brazil. We tested environmental covariates with different spatial resolutions as predictors, and used 361 observations to train the model and 64 independent observations to validate the map. Prediction models included three decision trees and one logistic regression model. The results showed that freely available environmental covariates with coarser spatial resolution can produce as good or better suborder predictions than more expensive covariates with finer resolution.

Ano de publicação: 2015

Tipo de publicação: Artigo em anais e proceedings

Unidade: Embrapa Solos

Observações

1 - Por padrão são exibidas publicações dos últimos 20 anos. Para encontrar publicações mais antigas, configure o filtro ano de publicação, colocando o ano a partir do qual você deseja encontrar publicações. O filtro está na coluna da esquerda na busca acima. 

2 - Para ler algumas publicações da Embrapa (apenas as que estão em formato ePub), é necessário ter, no celular ou computador, um desses softwares gratuitos. Sistemas Android: Google Play Livros; IOS: iBooks; Windows e Linux: software Calibre.

 


Acesse outras publicações

Acesse a Base de Dados da Pesquisa Agropecuária (BDPA) para consultar o acervo completo das bibliotecas da Embrapa.