Classification of apple tree disorders using Convolutional Neural Networks.

Enter multiple e-mails separated by comma.

imagem

Author(s): NACHTIGALL, L. G.; ARAUJO, R. M.; NACHTIGALL, G. R.

Summary: Abstract?This paper studies the use of Convolutional Neural Networks to automatically detect and classify diseases, nutritional deficiencies and damage by herbicides on apple trees from images of their leaves. This task is fundamental to guarantee a high quality of the resulting yields and is currently largely performed by experts in the field, which can severely limit scale and add to costs. By using a novel data set containing labeled examples consisting of 2539 images from 6 known disorders, we show that trained Convolutional Neural Networks are able to match or outperform experts in this task, achieving a 97.3% accuracy on a hold-out set.

Publication year: 2016

Types of publication: Paper in annals and proceedings

Observation

Some of Embrapa's publications are published as ePub files. To read them, use or download one of the following free software options to your computer or mobile device. Android: Google Play Books; IOS: iBooks; Windows and Linux: Calibre.

 


Access other publications

Access the Agricultural Research Database (BDPA) to consult Embrapa's full library collection and records.
Visit Embrapa Bookstore to purchase books and other publications sold by Embrapa.