Classificação orientada a objetos em imagens multitemporais ladsat aplicada na identificação de cana-de-açúcar e soja.
Classificação orientada a objetos em imagens multitemporais ladsat aplicada na identificação de cana-de-açúcar e soja.
Autoria: SCHULTZ, B.; FORMAGGIO, A. R.; EBERHARDT, I. D. R.; SANCHES, I. D.; OLIVEIRA, J. C. de; LUIZ, A. J. B.
Resumo: Resumo: A presente pesquisa teve por objetivo avaliar a potencialidade de dados multitemporais Landsat para classificação de cana-de-açúcar e de soja, conjuntamente, quando realizada via Análise de Imagens Orientada a Objetos (OBIA/ Random Forest). Foi utilizado um segmentador multi-resolução (SM) para gerar os polígonos (objetos). Um conjunto de 500 segmentações foi criado pela variação dos parâmetros Fe (fator de escala), Fm (forma) e Cp (compacidade), e avaliado pelo Índice de Avaliação da Segmentação (IAVAS). Da segmentação que obteve menor IAVAS, foram extraídos os atributos espectrais das médias e desvios-padrão das bandas TM/Landsat-5 [setembro (S) e outubro (O) do ano 2000] e ETM+/Landsat-7 [fevereiro (F) e março (M) do ano 2001] dos objetos, e seus NDVIs. Estes atributos foram inseridos no algoritmo Random Forest (RF) e as exatidões das classificações foram testadas quanto ao uso dos seguintes conjuntos de datas: SOFM; SFM; OFM; SOF; FM; OF; SF; e F. O IAVAS de?niu Fe (35), Fm (30) e Cp (50) como melhores parâmetros de segmentação. As melhores exatidões de classificação Random Forest situaram-se em torno de 86%. Duas datas produziram melhor resultado que apenas uma, entretanto, o uso de mais de duas não produziu melhora signi?cativa na exatidão ?nal da classificação. Abstract: This research aimed to evaluate the potential of multi-temporal Landsat data for sugarcane and soybean classi? cation, together, when used through Object-Based Image Analysis (OBIA/Random Forest). It was used a multi-resolution segmenting (SM) to generate the objects. A set of 500 segmentations was created varying the Fe parameters (scale factor), Fm (shape) and Cp (compactness), and evaluated by Index for the Evaluation of Segmentation (IAVAS). At the segmentation that obtained the lowest IAVAS, were extracted the spectral attributes of means and standard deviations of bands TM / Landsat-5 [September (S) and October (O) of the year 2000] and ETM + / Landsat-7 [February (F) and March (M) for the year 2001] of the objects, and their NDVIs. These attributes were inserted into the algorithm Random Forest (RF) and accuracies were tested using the following set of dates: (SOFM); (SFM and OFM); (FM, OF and SF); and (F). The IAVAS de? nes Fe (35), Fm (30) and Cp (50) as the best segmentation parameters for the study area. The best classi? cation accuracies are situated around 86%. Two dates produced better results than just one, however the use of more than two failed to produce a signi? cant improvement in the ? nal classi? cation accuracy.
Ano de publicação: 2016
Tipo de publicação: Artigo de periódico
Unidade: Embrapa Meio Ambiente
Palavras-chave: Cana de açucar, IAVAS, Imagem de satélite, Mapeamento, Segmentation, Segmentação, Sensoriamento remoto, Soja, Sugarcane and soybean mapping
Observações
1 - Por padrão são exibidas publicações dos últimos 20 anos. Para encontrar publicações mais antigas, configure o filtro ano de publicação, colocando o ano a partir do qual você deseja encontrar publicações. O filtro está na coluna da esquerda na busca acima.
2 - Para ler algumas publicações da Embrapa (apenas as que estão em formato ePub), é necessário ter, no celular ou computador, um desses softwares gratuitos. Sistemas Android: Google Play Livros; IOS: iBooks; Windows e Linux: software Calibre.
Acesse outras publicações
Acesse a Base de Dados da Pesquisa Agropecuária (BDPA) para consultar o acervo completo das bibliotecas da Embrapa.