Active learning e sua aplicação no monitoramento da cana-de-açúcar utilizando o algoritmo SVM.
Active learning e sua aplicação no monitoramento da cana-de-açúcar utilizando o algoritmo SVM.
Author(s): SILVA, J. P. da; ZULLO JÚNIOR, J.; ROMANI, L. A. S.
Summary: A cana-de-açúcar é um dos pilares do agronegócio brasileiro e, por apresentar intensa dinâmica expansionista, demanda metodologias que subsidiem a criação de estratégias políticas e econômicas que promovam a sustentabilidade da produção. Este artigo propõe uma nova abordagem de monitoramento de áreas canavieiras baseada na classificação de séries temporais de imagens de satélite associada à técnica de Active Learning. A interação do usuário especialista no aprendizado do algoritmo de classificação através desta técnica utilizando parâmetros sazonais das séries temporais gerou um conjunto de treino otimizado que promoveu a redução do custo operacional de monitoramento da ocupação da cana-de-açúcar. A correlação de cerca de 90% observada entre as análises conduzidas neste trabalho com dados oficiais indica que a metodologia proposta pode ser utilizada no monitoramento agrícola devido à similaridade entre os resultados associada ao baixo custo operacional envolvido.
Publication year: 2017
Types of publication: Paper in annals and proceedings
Observation
Some of Embrapa's publications are published as ePub files. To read them, use or download one of the following free software options to your computer or mobile device. Android: Google Play Books; IOS: iBooks; Windows and Linux: Calibre.
Access other publications
Access the Agricultural Research Database (BDPA) to consult Embrapa's full library collection and records.
Visit Embrapa Bookstore to purchase books and other publications sold by Embrapa.