A case study for a multitemporal segmentation approach in optical remote sensing images.
A case study for a multitemporal segmentation approach in optical remote sensing images.
Author(s): COSTA, W.; FONSECA, L.; KÖRTING, T.; SIMÕES, M.; KUCHLER, P.
Summary: Continuous observations from remote sensors provide high temporal and spatial resolution imagery, and better remote sensing image segmentation techniques are mandatory for efficient analysis. Among them, one of the most applied segmentation techniques is the region growing algorithm. Within this context, this paper describes a study case for a multitemporal segmentation that adapts the traditional region growing technique. Our method aims to detect homogeneous regions in space and time observing a sequence of optical remote sensing images. Tests were conducted by considering the Dynamic Time Warping distance as the homogeneity criterion to grow regions. A case study on high temporal resolution for sequences of Landsat-8 vegetation indices products provided satisfactory outputs.
Publication year: 2018
Types of publication: Paper in annals and proceedings
Unit: Embrapa Soils
Observation
Some of Embrapa's publications are published as ePub files. To read them, use or download one of the following free software options to your computer or mobile device. Android: Google Play Books; IOS: iBooks; Windows and Linux: Calibre.
Access other publications
Access the Agricultural Research Database (BDPA) to consult Embrapa's full library collection and records.
Visit Embrapa Bookstore to purchase books and other publications sold by Embrapa.