Avaliação da eficiência de algoritmos de aprendizado de máquina para classificação automática de solos.

Enter multiple e-mails separated by comma.

imagem

Author(s): VASCONCELOS, G. T.; OLIVEIRA, S. R. de M.

Summary: RESUMO - Técnicas de mineração de dados têm sido usadas, estrategicamente, para transformar dados em informações e conhecimentos visando subsidiar o processo decisório em vários domínios. Na agricultura, em particular, essas técnicas são eficientes para selecionar um conjunto de atributos relevantes no processo de geração de modelos preditivos em bancos de dados com muitas variáveis. Este trabalho tem por objetivo avaliar a eficiência de diferentes algoritmos de Aprendizado de Máquina (AM) para classificação automática de solos, no 1º nível categórico do Sistema Brasileiro de Classificação de Solos (SiBCS). Os dados foram obtidos do projeto Mapeamento de Recursos Naturais do Brasil, liderado pelo Instituo Brasileiro de Geografia e Estatística (IBGE). Alguns algoritmos de AM (árvore de decisão, SVM, kNN) foram utilizados para classificação de solos de acordo com o SiBCS. Os resultados obtidos são promissores e abrem perspectivas para a classificação automática de solos, a partir de critérios definidos e de informações organizadas em bancos de dados.

Publication year: 2018

Types of publication: Paper in annals and proceedings

Observation

Some of Embrapa's publications are published as ePub files. To read them, use or download one of the following free software options to your computer or mobile device. Android: Google Play Books; IOS: iBooks; Windows and Linux: Calibre.

 


Access other publications

Access the Agricultural Research Database (BDPA) to consult Embrapa's full library collection and records.
Visit Embrapa Bookstore to purchase books and other publications sold by Embrapa.