Montagem de ambiente para classificação de solos usando ScikitLearn.
Montagem de ambiente para classificação de solos usando ScikitLearn.
Autoria: VASCONCELOS, G. T.; SOUZA, K. X. S. de; OLIVEIRA, S. R. de M.; CAMARGO NETO, J.
Resumo: Resumo - Técnicas de Mineração de Dados e Modelagem preditiva são cada vez mais usadas para automação de tarefas nos mais diversos campos do conhecimento. O da agricultura é um deles, existindo diversos modelos para predição de eventos climáticos, ocorrências de pragas e produtividade. A classificação de solos é uma das tarefas dentro dessa área que ainda não possui um sistema computacional satisfatório. Este trabalho tem como objetivo a criação de um sistema para a classificação automática de solos, a partir de dados previamente classificados segundo o método descrito no Sistema Brasileiro de Classificação de Solos (SiBCS). A modelagem para o sistema de classificação aqui proposto tem como base algoritmos de Aprendizado de Máquina. O trabalho ainda está em andamento e os resultados obtidos até agora indicam que a abordagem é promissora.
Ano de publicação: 2018
Tipo de publicação: Artigo em anais e proceedings
Unidade: Embrapa Agricultura Digital
Palavras-chave: Atributos de solos, Floresta aleatória, K-Nearest Neighbors, Mineração de dados, Árvore de decisão
Observações
1 - Por padrão são exibidas publicações dos últimos 20 anos. Para encontrar publicações mais antigas, configure o filtro ano de publicação, colocando o ano a partir do qual você deseja encontrar publicações. O filtro está na coluna da esquerda na busca acima.
2 - Para ler algumas publicações da Embrapa (apenas as que estão em formato ePub), é necessário ter, no celular ou computador, um desses softwares gratuitos. Sistemas Android: Google Play Livros; IOS: iBooks; Windows e Linux: software Calibre.
Acesse outras publicações
Acesse a Base de Dados da Pesquisa Agropecuária (BDPA) para consultar o acervo completo das bibliotecas da Embrapa.