Soil water dynamics and yield in maize and Brachiaria ruziziensis intercropping.
Soil water dynamics and yield in maize and Brachiaria ruziziensis intercropping.
Author(s): SILVA, G. S. F.; ANDRADE JUNIOR, A. S. de; CARDOSO, M. J.; ARAUJO NETO, R. B. de
Summary: In intercropping systems, a high plant density can delay the biomass accumulation and affect the water availability to plants. This study aimed to evaluate the soil water dynamics and the crop yield performance in maize and Brachiaria ruziziensis intercropping under different sowing densities of the forage grass. The experiment was conducted in a randomized block design, with treatments associated to the sowing densities (2 kg ha-1, 4 kg ha-1, 6 kg ha-1 and 8 kg ha-1) and the single cropping for both species as controls. The maize plants were evaluated for grain yield and B. ruziziensis for number of plants per hectare and shoot fresh and dry matter. The intercropping performance was evaluated using the land-use efficiency index. The soil water dynamics was monitored in two soil depths (0-0.3 m and 0.3-0.6 m) by using the time domain reflectometry method. The evaluation of soil water storage was carried out from plots with four of the crop systems (single maize or B. ruziziensis, and intercropping with the extreme sowing densities), at four different times. The increase in the sowing density of B. ruziziensis decreased the grain yield of the intercropped maize by 30.8 %. The intercropping system using 2 kg ha-1 of the grass seeds resulted in the best land-use efficiency (23 %). In addition, the intercropping treatments promoted a higher extraction of water from the soil, mainly at the maize growth stages with higher hydric demand (e.g., flowering and grain filling). These systems stimulate the extraction of water from deeper soil layers, when compared to maize in single cropping.
Publication year: 2020
Types of publication: Journal article
Unit: Embrapa Mid-North
Observation
Some of Embrapa's publications are published as ePub files. To read them, use or download one of the following free software options to your computer or mobile device. Android: Google Play Books; IOS: iBooks; Windows and Linux: Calibre.
Access other publications
Access the Agricultural Research Database (BDPA) to consult Embrapa's full library collection and records.
Visit Embrapa Bookstore to purchase books and other publications sold by Embrapa.