Individual tree detection and species classification of Amazonian palms using UAV images and deep learning.

Informe múltiplos e-mails separados por vírgula.

imagem

Autoria: FERREIRA, M. P.; ALMEIDA, D. R. A. de; PAPA, D. de A.; MINERVINO, J. B. S.; VERAS, H. F. P.; FORMIGHIERI, A.; SANTOS, C. A. N.; FERREIRA, M. A. D.; FIGUEIREDO, E. O.; FERREIRA, E. J. L.

Resumo: Information regarding the spatial distribution of palm trees in tropical forests is crucial for commercial exploitation and management. However, spatially continuous knowledge of palms occurrence is scarce and difficult to obtain with conventional approaches such as field inventories. Here, we developed a new method to map Amazonian palm species at the individual tree crown (ITC) level using RGB images acquired by a low-cost unmanned aerial vehicle (UAV). Our approach is based on morphological operations performed in the score maps of palm species derived from a fully convolutional neural network model. We first constructed a labeled dataset by dividing the study area (135 ha within an old-growth Amazon forest) into 28 plots of 250 m×150 m. Then, we manually outlined all palm trees seen in RGB images with 4 cm pixels. We identified three palm species: Attalea butyracea, Euterpe precatoria and Iriartea deltoidea. We randomly selected 22 plots (80%) for training and six plots (20%) for testing. We changed the plots for training and testing to evaluate the variabilityn, in the classification accuracy and assess model generalization. Our method outperformed the average producer?s accuracy of conventional patch-wise semantic segmentation (CSS) in 4.7%. Moreover, our method correctly identified, on average, 34.7 percentage points more ITCs than CSS, which tended to merge trees that are close to each other. The producer's accuracy of A. butyracea, E. precatoria and I. deltoidea was 78.6 ± 5.5%, 8.6 ± 1.4% and 96.6 ± 3.4%, respectively. Fortunately, one of the most exploited and commercialized palm species in the Amazon (E. precatoria, a.k.a, Açaí) was mapped with the highest classification accuracy. Maps of E. precatoria derived from low-cost UAV systems can support management projects and community-based forest monitoring programs in the Amazon.

Ano de publicação: 2020

Tipo de publicação: Artigo de periódico

Unidade: Embrapa Acre

Observações

1 - Por padrão são exibidas publicações dos últimos 20 anos. Para encontrar publicações mais antigas, configure o filtro ano de publicação, colocando o ano a partir do qual você deseja encontrar publicações. O filtro está na coluna da esquerda na busca acima. 

2 - Para ler algumas publicações da Embrapa (apenas as que estão em formato ePub), é necessário ter, no celular ou computador, um desses softwares gratuitos. Sistemas Android: Google Play Livros; IOS: iBooks; Windows e Linux: software Calibre.

 


Acesse outras publicações

Acesse a Base de Dados da Pesquisa Agropecuária (BDPA) para consultar o acervo completo das bibliotecas da Embrapa.