A study on CNN-based detection of psyllids in sticky traps using multiple image data sources.

Enter multiple e-mails separated by comma.

imagem

Author(s): BARBEDO, J. G. A.; CASTRO, G. B.

Summary: Abstract: Deep learning architectures like Convolutional Neural Networks (CNNs) are quickly becoming the standard for detecting and counting objects in digital images. However, most of the experiments found in the literature train and test the neural networks using data from a single image source, making it difficult to infer how the trained models would perform under a more diverse context. The objective of this study was to assess the robustness of models trained using data from a varying number of sources. Nine different devices were used to acquire images of yellow sticky traps containing psyllids and a wide variety of other objects, with each model being trained and tested using different data combinations. The results from the experiments were used to draw several conclusions about how the training process should be conducted and how the robustness of the trained models is influenced by data quantity and variety.

Publication year: 2020

Types of publication: Journal article

Observation

Some of Embrapa's publications are published as ePub files. To read them, use or download one of the following free software options to your computer or mobile device. Android: Google Play Books; IOS: iBooks; Windows and Linux: Calibre.

 


Access other publications

Access the Agricultural Research Database (BDPA) to consult Embrapa's full library collection and records.
Visit Embrapa Bookstore to purchase books and other publications sold by Embrapa.