Estimation of sanity of a stand of Pinus taeda L. after the attack of Sapajus nigritus Kerr (1972) using vegetation index.
Estimation of sanity of a stand of Pinus taeda L. after the attack of Sapajus nigritus Kerr (1972) using vegetation index.
Author(s): PERTILLE, C. T.; SCHIMALSKI, M. B.; PICINATTO FILHO, V.; LIESENBERG, V.; OLIVEIRA, E. B. de; MIRANDA, F. das D. A.
Summary: Essa pesquisa objetivou ajustar modelos de regressão e classificação utilizando os índices de vegetação (IV) mais robustos derivados a partir de imagens digitais de Sentinel-2/MSI para a detecção de áreas atacadas por Sapajus nigritus. Os dados de campo foram obtidos em um povoamento de Pinus taeda L. localizado em Bocaina do Sul, estado de Santa Catarina. Foram alocadas 46 parcelas, nas quais os indivíduos arbóreos foram classificados de acordo com a intensidade do ano em: I: sem dano, II: moderado, III: severo e IV: morto. Foram utilizadas três imagens orbitais da constelação Sentinel-2/MSI em datas coincidentes ao pré ataque, ataque e pós ataque. Por meio de Análise de Componentes Principais, foram selecionados os índices de vegetação como variáveis regressoras para o desenvolvimento de modelos de regressão por Stepwise, Support Vector Machine (SVM) e Random Forest (RF) para a estimativa do percentual das classes de ataque por parcela. A seleção de melhor modelo foi baseada em estatísticas de ajuste de modelos de regressão. Os índices mais robustos foram o MCARI, NDI45 e NDVIRR, os quais estimaram para as classes um percentual de ataque de S. nigritus por parcela com R2 ajustado de 0,80, 0,46, 0,88 e 0,97; Syx de 13,49, 61,42, 15,11 e 8,69 (% 0,045 ha-1) e RMSE de 1,95, 4,49, 2,11 e 0,32 (% 0,045 ha1). Foi possível estimar/identificar áreas atacadas por esse primata no povoamento avaliado, destacando a modelagem Stepwise, seguida por SVM e RF. Entretanto, recomenda-se testar imagens digitais de alta/ultra alta resolução espacial para corroborar com tal metodologia.
Publication year: 2020
Types of publication: Journal article
Unit: Embrapa Forestry
Observation
Some of Embrapa's publications are published as ePub files. To read them, use or download one of the following free software options to your computer or mobile device. Android: Google Play Books; IOS: iBooks; Windows and Linux: Calibre.
Access other publications
Access the Agricultural Research Database (BDPA) to consult Embrapa's full library collection and records.
Visit Embrapa Bookstore to purchase books and other publications sold by Embrapa.