Comparison of classification algorithms of images for the mapping of the land covering in Tasso Fragoso municipality, Brazil.
Comparison of classification algorithms of images for the mapping of the land covering in Tasso Fragoso municipality, Brazil.
Autoria: PEREIRA, P. R. M.; COSTA, F. W. D.; BOLFE, E. L.; MACARRINGE, L.; BOTELHO, A. C.
Resumo: Abstract. One of the main applications of satellite images is the characterization of terrestrial coverage, that from the use of classification techniques, allows the monitoring of spatial transformations of the terrestrial surface, this process being directly associated with the potential of classifiers to differentiate the most diverse data present in the images, a fundamental aspect for the use of remote sensing data. This article evaluates the performance of different classification algorithms in the mapping classes of land use and land cover in medium resolution images from the Landsat 8 program, the test area of this test corresponds to the Municipality of Tasso Fragoso (State Maranhão - Brazil), stands out for a typical vegetation cover of the Cerrado Biome, presents similar spectral patterns that induce high difficulty of class differentiation automatically. In this paper, were analyzed the machine learning algorithms C5.0 and Random Forest in comparison to traditional classification algorithms being the Minimum Distance and the Spectral Angle Mapper. The best results were generated by Random Forest with 90% accuracy and Kappa of 0.861, followed by the C5.0 algorithm. Traditional algorithms, on the other hand, presented a lower precision rate with global accuracy, not exceeding 75% of accuracy and Kappa varying between 0.507 and 0.627. The accuracy of the producer showed that all the algorithms, in major or minor tendency presented difficulties in to differentiate the areas, with rates of mistakes varying between 25 and 75%, being the main, the confusion with pastoral areas.
Ano de publicação: 2021
Tipo de publicação: Artigo de periódico
Unidade: Embrapa Agricultura Digital
Palavras-chave: Algoritmos de aprendizado de máquina, Bioma cerrado, Cerrado Biome, Classification algorithms, Classificação digital, Cobertura da terra, Digital Classification, Land cover, Land use, Landsat 8, Machine learning algorithms, Maranhão State, Performance Indexes, Random Forest, Uso da Terra
Observações
1 - Por padrão são exibidas publicações dos últimos 20 anos. Para encontrar publicações mais antigas, configure o filtro ano de publicação, colocando o ano a partir do qual você deseja encontrar publicações. O filtro está na coluna da esquerda na busca acima.
2 - Para ler algumas publicações da Embrapa (apenas as que estão em formato ePub), é necessário ter, no celular ou computador, um desses softwares gratuitos. Sistemas Android: Google Play Livros; IOS: iBooks; Windows e Linux: software Calibre.
Acesse outras publicações
Acesse a Base de Dados da Pesquisa Agropecuária (BDPA) para consultar o acervo completo das bibliotecas da Embrapa.