Algoritmo (MAHM) para alerta georreferenciado de doença em redes de sensoriamento IoT de microclima: calibração e teste de um método para míldio, em dois vinhedos.

Enter multiple e-mails separated by comma.

imagem

Author(s): CAVALCANTI, F. R.

Summary: O trabalho apresenta um método para alerta de míldio da videira para vinhedos Vitis labrusca: o módulo de alerta de doença por heat map ? Embrapa/MAHM que é um algoritmo que usa equações de favorabilidade de doença sobre uma determinada área de produção vegetal subdividida em quadrantes. As estimativas são entregues ao usuário em forma de alerta por quadrante interno à área de plantio, com diferentes cores que indicam diferentes níveis de risco de doença e/ou recomendação de pulverização. O MAHM usa informações de umidade relativa (%UR) e temperatura do ar fornecidas por três ou mais sensores de IoT simples, instalados em triangulação nas extremidades da área de plantio, em pequenas propriedades (1 a 5 ha). Os quadrantes (unidades de monitoramento) podem ser georreferenciados. O algoritmo pode fundamentar plataformas de IoT de baixo custo, com infraestrutura de comunicação (LoRaWAN, Sigfox, etc) e localização (GPS).

Publication year: 2021

Types of publication: Booklets

Observation

Some of Embrapa's publications are published as ePub files. To read them, use or download one of the following free software options to your computer or mobile device. Android: Google Play Books; IOS: iBooks; Windows and Linux: Calibre.

 


Access other publications

Access the Agricultural Research Database (BDPA) to consult Embrapa's full library collection and records.
Visit Embrapa Bookstore to purchase books and other publications sold by Embrapa.