Algoritmo (MAHM) para alerta georreferenciado de doença em redes de sensoriamento IoT de microclima: calibração e teste de um método para míldio, em dois vinhedos.
Algoritmo (MAHM) para alerta georreferenciado de doença em redes de sensoriamento IoT de microclima: calibração e teste de um método para míldio, em dois vinhedos.
Resumo: O trabalho apresenta um método para alerta de míldio da videira para vinhedos Vitis labrusca: o módulo de alerta de doença por heat map ? Embrapa/MAHM que é um algoritmo que usa equações de favorabilidade de doença sobre uma determinada área de produção vegetal subdividida em quadrantes. As estimativas são entregues ao usuário em forma de alerta por quadrante interno à área de plantio, com diferentes cores que indicam diferentes níveis de risco de doença e/ou recomendação de pulverização. O MAHM usa informações de umidade relativa (%UR) e temperatura do ar fornecidas por três ou mais sensores de IoT simples, instalados em triangulação nas extremidades da área de plantio, em pequenas propriedades (1 a 5 ha). Os quadrantes (unidades de monitoramento) podem ser georreferenciados. O algoritmo pode fundamentar plataformas de IoT de baixo custo, com infraestrutura de comunicação (LoRaWAN, Sigfox, etc) e localização (GPS).
Ano de publicação: 2021
Tipo de publicação: Folhetos
Unidade: Embrapa Uva e Vinho
Observações
1 - Por padrão são exibidas publicações dos últimos 20 anos. Para encontrar publicações mais antigas, configure o filtro ano de publicação, colocando o ano a partir do qual você deseja encontrar publicações. O filtro está na coluna da esquerda na busca acima.
2 - Para ler algumas publicações da Embrapa (apenas as que estão em formato ePub), é necessário ter, no celular ou computador, um desses softwares gratuitos. Sistemas Android: Google Play Livros; IOS: iBooks; Windows e Linux: software Calibre.
Acesse outras publicações
Acesse a Base de Dados da Pesquisa Agropecuária (BDPA) para consultar o acervo completo das bibliotecas da Embrapa.