O Nariz eletrônico (E-nose) e a inteligência artificial, aplicados para monitorar de forma não invasiva o nível de estresse hídrico da soja.

Enter multiple e-mails separated by comma.

imagem

Author(s): LUCCAS, M. dos S.; HERRMANN JUNIOR, P. S. de P.; FERREIRA, E. J.; TORRE NETO, A.

Summary: A intensidade e a severidade do déficit hídrico são consideradas indicadores de fundamental importância, relacionado ao estresse abiótico, e que limitam a produção agrícola mundial. Neste trabalho apresenta-se os estudos na investigação do estresse com o uso do Nariz Eletrônico (“Enose”) e aprendizado de máquina (“machine learning”). O objetivo deste trabalho foi realizar medidas com o “E-nose” e do monitoramento de CO2 (ppm), da temperatura (oC), umidade relativa (%) e iluminação (Lux) para a cultura da soja em crescimento e em ambiente controlado, observando as alterações de níveis desses dados de maneira continuada ao longo da submissão do estresse hídrico. Os dados obtidos foram aplicados no aprendizado de máquina para estudar a detecção de níveis de severidade do estresse (ausência de estresse, estresse moderado ou estresse severo). A aplicação de técnicas de inteligência artificial permite a identificação antecipada do estresse na planta, de maneira não invasiva, não destrutiva e que pode vir a ser utilizado para apoiar a tomada de decisão. Durante as medições, as plantas foram mantidas em uma câmara instrumentada e o monitoramento dos dados de temperatura, de umidade relativa e CO2 foi feito a cada 5 minutos. Dados esses que compuseram uma base de dados maior, junto a análise gasosa do “E-nose” e as medidas da intensidade luminosa, onde ambas foram realizadas duas vezes ao dia. Após esse processo, realizou-se a mineração de dados visando classificar o nível de severidade do estresse hídrico na planta. Amostras de 500 µl de gases da câmara foram obtidas em triplicata, sendo utilizado o método de “headspace”, para análise global dos compostos orgânicos voláteis (COVs). Um “E-nose” comercial da Alpha Moss foi utilizado. As curvas de sensibilidade (?(%)) obtidas alimentaram a base de dados junto ao monitoramento da câmara. As técnicas de mineração de dados foram utilizadas, por intermédio do software “WekaTM” e utilizou-se a estratégia de árvore de decisão, “K-nearest neighbors (KNN)” e análise de discriminantes lineares (LDA). Testes de validação foram aplicados nos aprendizados, considerando plantas distintas para o treino e o teste, o que representou bons resultados para o aprendizado sobre o comportamento da medida de amostra de planta através do conjunto de outras plantas. Ao final de 27 testes, obteve-se um classificador capaz de detectar com bom índice de acerto a ausência de irrigação e, com uma menor eficiência, a severidade do estresse, usando o monitoramento de uma planta para predição do comportamento de outra. Nos trabalhos futuros pretende-se investigar essa aplicação metodológica em condições experimentais adversas e os seus níveis de severidade.

Publication year: 2021

Observation

Some of Embrapa's publications are published as ePub files. To read them, use or download one of the following free software options to your computer or mobile device. Android: Google Play Books; IOS: iBooks; Windows and Linux: Calibre.

 


Access other publications

Access the Agricultural Research Database (BDPA) to consult Embrapa's full library collection and records.
Visit Embrapa Bookstore to purchase books and other publications sold by Embrapa.