Mathematical models for metric features extraction from RGB-D sensor.
Mathematical models for metric features extraction from RGB-D sensor.
Autoria: SANTOS, E. F. dos; VENDRUSCULO, L. G.; LOPES, L. B.; KAMCHEN, S. G.; CONDOTTA, I. C. F. S.
Resumo: Abstract. The use of the RGB-D camera has been applied in several fields of science. That popularization is due to the emergence of technologies such as the Intel® RealSenseTM D400 series. However, despite the actual demand from some potential users, few studies concern the characterization of these sensors for object measurements. Our study sought to estimate models dealing with calculating the area and length between targets or points within RGB and depth images. An experiment was set up with white cardboard fixed on a flat surface with colored pins. We measured the distance between the camera and cardboard by calculating the average distance from the pixels belonging to the target area. The Information Criterion AIC and BIC associated with R2 were performed to select the best models. Polynomial and power regression models reached the highest coefficient of determination and smallest values of AIC and BIC.
Ano de publicação: 2021
Tipo de publicação: Artigo de periódico
Unidade: Embrapa Agricultura Digital
Observações
1 - Por padrão são exibidas publicações dos últimos 20 anos. Para encontrar publicações mais antigas, configure o filtro ano de publicação, colocando o ano a partir do qual você deseja encontrar publicações. O filtro está na coluna da esquerda na busca acima.
2 - Para ler algumas publicações da Embrapa (apenas as que estão em formato ePub), é necessário ter, no celular ou computador, um desses softwares gratuitos. Sistemas Android: Google Play Livros; IOS: iBooks; Windows e Linux: software Calibre.
Acesse outras publicações
Acesse a Base de Dados da Pesquisa Agropecuária (BDPA) para consultar o acervo completo das bibliotecas da Embrapa.