Big earth observation data and machine learning for mapping crop-livestock integrated system in Brazil.
Big earth observation data and machine learning for mapping crop-livestock integrated system in Brazil.
Autoria: KUCHLER, P. C.; SIMÕES, M.; BEGUE, A.; FERRAZ, R. P. D.
Resumo: The adoption of crop-livestock (iCL) integrated systems has been pointed out as an important strategy for increasing production based on sustainable intensification of land use in Brazil. Mapping and monitoring the iCL areas would allow us to know the expansion rates and the adoption level of the integrated system, being an important instrument for public policy management. However, due to the time-space variability from integrated production systems, developing methods based on remote sensing remains a major challenge. In this sense, this work discusses the application of Big Data and machine learning concepts in Earth Observation Data as a strategy to compose a methodology for monitoring the iCL in Brazil. We tested the capacity of the Random Forest (RF) classifier applied to MODIS time series to iCL detection in the Mato Grosso State, Brazil. For this, we evaluated the classification accuracy for the years between 2012 and 2019, totaling 3,864 images processed. The overall accuracy founded was between 0.77 and 0.89 and an fscore average of 0.85 was found for the iCL class. The generated maps showed a trajectory of sustainable intensification, with the expansion of the iCL area from 1,100,000 ha in 2012/2013 to 2,597,000 ha in 2018/2019, an increase of 135%. The results indicate that the use of the RF classification technique with MODIS times series has great potential to compose an iCL monitoring methodology, requiring parallel and cloud computing applied to advanced algorithms.
Ano de publicação: 2021
Tipo de publicação: Artigo em anais e proceedings
Unidade: Embrapa Solos
Observações
1 - Por padrão são exibidas publicações dos últimos 20 anos. Para encontrar publicações mais antigas, configure o filtro ano de publicação, colocando o ano a partir do qual você deseja encontrar publicações. O filtro está na coluna da esquerda na busca acima.
2 - Para ler algumas publicações da Embrapa (apenas as que estão em formato ePub), é necessário ter, no celular ou computador, um desses softwares gratuitos. Sistemas Android: Google Play Livros; IOS: iBooks; Windows e Linux: software Calibre.
Acesse outras publicações
Acesse a Base de Dados da Pesquisa Agropecuária (BDPA) para consultar o acervo completo das bibliotecas da Embrapa.