Aprendizagem de máquina para identificação de plantas de soja sob ataque de insetos usando dados hiperespectrais.
Aprendizagem de máquina para identificação de plantas de soja sob ataque de insetos usando dados hiperespectrais.
Author(s): CORREA, D. V.; RAMOS, A. P. M.; OSCO, L. P.; JORGE, L. A. de C.
Summary: A integração entre as áreas de sensoriamento remoto e machine learning tem permitido um avanço na forma de mapeamento de campos agrícolas e monitoramento de culturas. Este trabalho investiga a capacidade de algoritmos de aprendizagem de máquina em classificar plantas de soja sob ataque de insetos, utilizando medidas de espectroscopia de refletância coletadas ao nível foliar. Para tanto, desenvolveu-se testes com diferentes algoritmos utilizando um conjunto de 991 curvas espectrais referentes à planta de soja saudável e sob ataque de pragas, coletadas em oito dias consecutivos. Essas curvas foram medidas pela equipe da EMBRAPA, usando um espectrorradiômetro portátil, que registra no intervalo de 350 a 2500 nm. Tais curvas foram, inicialmente, pré-processadas para a remoção das regiões de absorção atmosférica pelo vapor d?água, e em seguida subdividida em conjunto de treino, validação e teste dos algoritmos de aprendizagem de máquina. Utilizou-se o interpretador Google Collabs e os algoritmos foram inscritos em linguagem Python, utilizando bibliotecas, como a Skit Sklearn. Dentre os algoritmos utilizados, tem-se Random Forest, Decision Tree, Support Vector Machine, Logistic Regression e Extra-Tree. O Extra-tree tem melhor desempenho (F1-score = 80,40%; precision = 81%; recall = 80%) na tarefa proposta. Conclui-se que é possível processar medidas de espectroscopia de refletância com algoritmos de aprendizagem de máquina para se monitorar o ataque por insetos em plantas de soja. Recomenda-se que a abordagem aplicada seja testada em outras culturas.
Publication year: 2023
Types of publication: Journal article
Unit: Embrapa Instrumentation
Keywords: Aprendizagem de máquina, Medidas de refletância
Observation
Some of Embrapa's publications are published as ePub files. To read them, use or download one of the following free software options to your computer or mobile device. Android: Google Play Books; IOS: iBooks; Windows and Linux: Calibre.
Access other publications
Access the Agricultural Research Database (BDPA) to consult Embrapa's full library collection and records.
Visit Embrapa Bookstore to purchase books and other publications sold by Embrapa.