Land use/land cover classification in a heterogeneous agricultural landscape using PlanetScope data.
Land use/land cover classification in a heterogeneous agricultural landscape using PlanetScope data.
Author(s): BUENO, I. T.; ANTUNES, J. F. G.; TORO, A. P. S. G. D.; WERNER, J. P. S.; COUTINHO, A. C.; FIGUEIREDO, G. K. D. A.; LAMPARELLI, R. A. C.; ESQUERDO, J. C. D. M.; MAGALHÃES, P. S. G.
Summary: This study evaluated the accuracy of LULC classification based on an initial clustering step in a heterogeneous agricultural landscape using PlanetScope imagery while checking for variability among their Normalized Difference Vegetation Index (NDVI) temporal signatures.
Publication year: 2023
Types of publication: Journal article
Keywords: Agricultural crops, Assinatura espectro-temporal, Clustering, Clusterização, Cobertura da terra, Culturas agrícolas, Floresta aleatória, Intra-class variability, Land cover, Land use, OBIA, Object-Based Image Analysis, Random Forest, Spectro-temporal signature, Uso da Terra, Variabilidade intraclasse
Observation
Some of Embrapa's publications are published as ePub files. To read them, use or download one of the following free software options to your computer or mobile device. Android: Google Play Books; IOS: iBooks; Windows and Linux: Calibre.
Access other publications
Access the Agricultural Research Database (BDPA) to consult Embrapa's full library collection and records.
Visit Embrapa Bookstore to purchase books and other publications sold by Embrapa.