Deep learning e segmentação semântica de imagens para diagnóstico de níveis de degradação de pastagem.

Enter multiple e-mails separated by comma.

imagem

Author(s): VIEIRA, L. P.; SIMÕES, M.; FERRAZ, R. P. D.; RIBEIRO, J. A.

Summary: O processo de degradação de pastagem pode ser identificado quando a produção de forragem diminui, consequentemente, o aumento das áreas descobertas e plantas invasoras. Este trabalho objetivou avaliar técnicas de segmentação semântica de fotografias para diferenciação de plantas invasoras, forrageiras, solo exposto e palhada por meio do modelo DeeplabV3+. Primeiramente o modelo foi treinado com amostras do banco de dados The GrassClover Image Dataset for Semantic and Hierarchical Species Understanding in Agriculture. Um pequeno banco de dados foi construído a partir das fotografias ortogonais, retiradas da plataforma Atlas das Pastagens. Após o processo de treinamento com os dois bancos de imagens os resultados demonstraram satisfatórios com valores de MIoU de 87,6% com o primeiro banco de imagens e 75,4% com segundo banco de imagens. Conclui-se que as técnicas de segmentação semântica de imagens apresentam potencial para subsidiar a classificação da degradação de pastagens.

Publication year: 2023

Types of publication: Paper in annals and proceedings

Observation

Some of Embrapa's publications are published as ePub files. To read them, use or download one of the following free software options to your computer or mobile device. Android: Google Play Books; IOS: iBooks; Windows and Linux: Calibre.

 


Access other publications

Access the Agricultural Research Database (BDPA) to consult Embrapa's full library collection and records.
Visit Embrapa Bookstore to purchase books and other publications sold by Embrapa.