Estimação de parâmetros genéticos em caprinos leiteiros por meio de análise de regressão aleatória utilizando-se a Amostragem de Gibbs.
Estimação de parâmetros genéticos em caprinos leiteiros por meio de análise de regressão aleatória utilizando-se a Amostragem de Gibbs.
Resumo: Modelos de regressão aleatória foram utilizados neste estudo para estimar parâmetros genéticos da produção de leite no dia do controle (PLDC) em caprinos leiteiros da raça Alpina, por meio da metodologia Bayesiana. As estimativas geradas foram comparadas às obtidas com análise de regressão aleatória, utilizando-se o REML. As herdabilidades encontradas pela análise Bayesiana variaram de 0,18 a 0,37, enquanto, pelo REML, variaram de 0,09 a 0,32. As correlações genéticas entre dias de controle próximos se aproximaram da unidade, decrescendo gradualmente conforme a distância entre os dias de controle aumentou. Os resultados obtidos indicam que: a estrutura de covariâncias da PLDC em caprinos ao longo da lactação pode ser modelada adequadamente por meio da regressão aleatória; a predição de ganhos genéticos e a seleção de animais geneticamente superiores é viável ao longo de toda a trajetória da lactação; os resultados gerados pelas análises de regressão aleatória utilizandose a Amostragem de Gibbs e o REML foram semelhantes, embora as estimativas das variâncias genéticas e das herdabilidades tenham sido levemente superiores na análise Bayesiana, utilizando-se a Amostragem de Gibbs. Random regression models were used to estimate genetic parameters for test-day milk yield (PLDC) of Alpine dairy goats, implemented by Bayesian methods with Gibbs Sampling. The estimates were compared with those obtained by random regression analysis, using REML. Heritability estimates obtained by Bayesian analysis ranged from 0.18 to 0.37, while those obtained by REML ranged from 0.09 to 0.32. Genetic correlations between yields of close test days approached the unit, but decreased gradually as the interval between test days increased. Results indicated that random regression models are appropriate to model the covariance structure of PLDC and to predict genetic gains and select animals along the lactation trajectory of dairy goats. Results obtained by Bayesian and REML approaches were similar, although genetic variance and heritability estimates were slightly higher with Bayesian methods.
Ano de publicação: 2006
Tipo de publicação: Artigo de periódico
Unidade: Embrapa Acre
Observações
1 - Por padrão são exibidas publicações dos últimos 20 anos. Para encontrar publicações mais antigas, configure o filtro ano de publicação, colocando o ano a partir do qual você deseja encontrar publicações. O filtro está na coluna da esquerda na busca acima.
2 - Para ler algumas publicações da Embrapa (apenas as que estão em formato ePub), é necessário ter, no celular ou computador, um desses softwares gratuitos. Sistemas Android: Google Play Livros; IOS: iBooks; Windows e Linux: software Calibre.
Acesse outras publicações
Acesse a Base de Dados da Pesquisa Agropecuária (BDPA) para consultar o acervo completo das bibliotecas da Embrapa.