Proximal hyperspectral analysis in grape leaves for region and variety identification.

Informe múltiplos e-mails separados por vírgula.

imagem

Autoria: ARRUDA, D. C. de; DUCATI, J. R.; HOFF, R.; BELLOLI, T. F.; THUM, A. B.

Resumo: Reflectance measurements of plants of the same species can produce sets of data with differences between spectra, due to factors that can be external to the plant, like the environment where the plant grows, and to internal factors, for measurements of different varieties. This paper reports results of the analysis of radiometric measurements performed on leaves of vines of several grape varieties and on several sites. The objective of the research was, after the application of techniques of dimensionality reduction for the definition of the most relevant wavelengths, to evaluate four machine learning models applied to the observational sample aiming to discriminate classes of region and variety in vineyards. The tested machine learning classification models were Canonical Discrimination Analysis (CDA), Light Gradient Boosting Machine (LGBM), Random Forest (RF), and Support Vector Machine (SVM). From the results, we reported that the LGBM model obtained better accuracy in spectral discrimination by region, with a value the 0.93, followed by the RF model. Regarding the discrimination between grape varieties, these two models also achieved better results, with accuracies of 0.88 and 0.89. The wavelengths more relevant for discrimination were at ultraviolet, followed by those at blue and green spectral regions. This research pointed toward the importance of defining the wavelengths more relevant to the characterization of the reflectance spectra of leaves of grape varieties and revealed the effective capability of discriminating vineyards by their region or grape variety, using machine learning models. Análise hiperespectral proximal em folhas de videiras para identificação de regiões e variedades RESUMO: Medições de refletância de plantas da mesma espécie podem produzir conjuntos de dados com diferenças entre os espectros, devido a fatores que podem ser externos à planta, como o ambiente onde a planta cresce, e fatores internos, para medições com variedades de plantas. Este artigo reporta resultados da análise de medições por espectrorradiometria efetuadas em folhas de vinhas de variedades e em diferentes localidades. O objetivo desta pesquisa foi, após a aplicação de técnicas de redução de dimensionalidade para a definição dos comprimentos de onda mais relevantes, avaliar quatro modelos de aprendizado de máquina aplicados à amostra observacional visando discriminar classes de região e variedade. Os modelos de classificação de aprendizado de máquina testados foram Canonical Discrimination Analysis (CDA), Light Gradient Boosting Machine (LGBM), Random Forest (RF) e Support Vector Machine (SVM). A partir dos resultados, relatamos que o modelo LGBM obteve melhor acurácia na discriminação espectral por região, com valor de 0,93, seguido pelo modelo RF. Relativamente à discriminação entre castas, estes dois modelos também obtiveram melhores resultados, com acurácias de 0,88 e 0,89. Os comprimentos de onda mais importantes para as discriminações procuradas estiveram na região do ultravioleta, seguidos do azul e do verde. Este trabalho aponta para a importância de detectar os comprimentos de onda mais relevantes para a caracterização dos espectros de reflectância das folhas de variedades de vinhas, e revela a capacidade efetiva de discriminar vinhedos por suas regiões ou variedades, usando modelos de aprendizado de máquina. Palavras-chave: Vinhedos, hiperespectral, aprendizagem de máquina.

Ano de publicação: 2023

Tipo de publicação: Artigo de periódico

Observações

1 - Por padrão são exibidas publicações dos últimos 20 anos. Para encontrar publicações mais antigas, configure o filtro ano de publicação, colocando o ano a partir do qual você deseja encontrar publicações. O filtro está na coluna da esquerda na busca acima. 

2 - Para ler algumas publicações da Embrapa (apenas as que estão em formato ePub), é necessário ter, no celular ou computador, um desses softwares gratuitos. Sistemas Android: Google Play Livros; IOS: iBooks; Windows e Linux: software Calibre.

 


Acesse outras publicações

Acesse a Base de Dados da Pesquisa Agropecuária (BDPA) para consultar o acervo completo das bibliotecas da Embrapa.