Medição de qualidade de sementes de canola com visão computacional e aprendizado de máquina.
Medição de qualidade de sementes de canola com visão computacional e aprendizado de máquina.
Author(s): SANTOS, W. R. dos; FALCAO, R.
Summary: Produtos originados dos grãos da canola, como óleo, farinha e biodiesel, são diretamente afetados pela qualidade desses grãos. O uso da tecnologia tem contribuído para a identificação dos grãos impuros ou em estágios diferentes de maturidade. A visão computacional em conjunto com o aprendizado de máquina pode gerar ferramentas capazes de avaliar a qualidade das sementes de forma não invasiva, sem destruir amostras e com baixo custo, uma vez que utiliza imagens digitais como insumo. O presente estudo propõe o uso de visão computacional e aprendizado não supervisionado de máquina para análise de sementes de canola a partir de imagens digitais, com o objetivo de contar, identificar cada semente e calcular o percentual de grãos maduros. Os resultados mostraram que o método K?Means pode ser usado para contar e identificar sementes de canola em fotografias com alta precisão. Na amostra, foram identificadas noventa e três sementes maduras, quatro verdes e três secas.
Publication year: 2023
Types of publication: Paper in annals and proceedings
Unit: Embrapa Agroenergy
Keywords: Canola, Google Colaboratory, Python, Qualidade, Semente
Observation
Some of Embrapa's publications are published as ePub files. To read them, use or download one of the following free software options to your computer or mobile device. Android: Google Play Books; IOS: iBooks; Windows and Linux: Calibre.
Access other publications
Access the Agricultural Research Database (BDPA) to consult Embrapa's full library collection and records.
Visit Embrapa Bookstore to purchase books and other publications sold by Embrapa.