Medição de qualidade de sementes de canola com visão computacional e aprendizado de máquina.

Informe múltiplos e-mails separados por vírgula.

imagem

Autoria: SANTOS, W. R. dos; FALCAO, R.

Resumo: Produtos originados dos grãos da canola, como óleo, farinha e biodiesel, são diretamente afetados pela qualidade desses grãos. O uso da tecnologia tem contribuído para a identificação dos grãos impuros ou em estágios diferentes de maturidade. A visão computacional em conjunto com o aprendizado de máquina pode gerar ferramentas capazes de avaliar a qualidade das sementes de forma não invasiva, sem destruir amostras e com baixo custo, uma vez que utiliza imagens digitais como insumo. O presente estudo propõe o uso de visão computacional e aprendizado não supervisionado de máquina para análise de sementes de canola a partir de imagens digitais, com o objetivo de contar, identificar cada semente e calcular o percentual de grãos maduros. Os resultados mostraram que o método K?Means pode ser usado para contar e identificar sementes de canola em fotografias com alta precisão. Na amostra, foram identificadas noventa e três sementes maduras, quatro verdes e três secas.

Ano de publicação: 2023

Tipo de publicação: Artigo em anais e proceedings

Observações

1 - Por padrão são exibidas publicações dos últimos 20 anos. Para encontrar publicações mais antigas, configure o filtro ano de publicação, colocando o ano a partir do qual você deseja encontrar publicações. O filtro está na coluna da esquerda na busca acima. 

2 - Para ler algumas publicações da Embrapa (apenas as que estão em formato ePub), é necessário ter, no celular ou computador, um desses softwares gratuitos. Sistemas Android: Google Play Livros; IOS: iBooks; Windows e Linux: software Calibre.

 


Acesse outras publicações

Acesse a Base de Dados da Pesquisa Agropecuária (BDPA) para consultar o acervo completo das bibliotecas da Embrapa.