Uso de Modelos de Decomposicão em Componentes Não Observáveis para predição de séries temporais não estacionárias de commodities agrícolas.

Informe múltiplos e-mails separados por vírgula.

imagem

Autoria: MIELKE, L. V.; VILLAS BOAS, P. R.

Resumo: A predição de séries temporais é frequentemente feita por Modelos Autoregressivos de Médias Móveis (ARMA, Autoregressive Moving Average em inglês) sendo a principal desvantagem desses modelos o requisito de que as séries temporais estudadas sejam estacionárias, o que frequentemente nao ocorre [1]. Para contornar esse problema, geralmente são feitos processos de diferenciacão de dados, que podem ser feitos diretamente no conjunto de dados ao se calcular a diferença do valor da variável no passo t com o valor do passo anterior t ? 1 [4], ou configurando os modelos para diferenciar sucessivamente a série analisada até ela se tornar estacionária, como no caso dos Modelos Autorregressivos Integrados de Médias Móveis (ARIMA, Autoregressive Integrated Moving Average, em inglês) e suas variações [3]. Apesar da possibilidade de diferenciação, os resultados dos modelos ARIMA continuam sendo sensíveis a dados perturbados e que não se desenvolvem ao redor de uma média constante [3]. Diante disso, os Modelos de Decomposico em Componentes Não Observáveis (UCM, Unobserved Component Model, em Inglês) surgem como uma alternativa promissora a esses modelos por não assumirem estacionariedade dos dados, além disso, os modelos UCM podem ser compreendidos em componentes de tendência, ciclo e perturbação, o que os torna especialmente úteis para analisar séries que possuem ciclo, como é o caso das culturas agrícolas [1]. Diante disso, o objetivo desse estudo foi comparar o desempenho de Modelos de Decomposição em Componentes Não Observáveis com o desempenho de Modelos Autoregressivos de Médias Móveis para a predição.

Ano de publicação: 2023

Tipo de publicação: Artigo em anais e proceedings

Observações

1 - Por padrão são exibidas publicações dos últimos 20 anos. Para encontrar publicações mais antigas, configure o filtro ano de publicação, colocando o ano a partir do qual você deseja encontrar publicações. O filtro está na coluna da esquerda na busca acima. 

2 - Para ler algumas publicações da Embrapa (apenas as que estão em formato ePub), é necessário ter, no celular ou computador, um desses softwares gratuitos. Sistemas Android: Google Play Livros; IOS: iBooks; Windows e Linux: software Calibre.

 


Acesse outras publicações

Acesse a Base de Dados da Pesquisa Agropecuária (BDPA) para consultar o acervo completo das bibliotecas da Embrapa.