Utilização de machine learning para classificação de plantas saudáveis e plantas submetidas ao estresse.
Utilização de machine learning para classificação de plantas saudáveis e plantas submetidas ao estresse.
Author(s): VIANA, J. V. S.; DANTAS, L. P.; PAULA, O. R. de; BARRETO, B. B.; MILORI, D. M. B. P.
Summary: A integração de tecnologias na agricultura tem se tornado cada vez mais comum, trazendo consigo uma série de benefícios, desde o aumento da produtividade até contribuições para a sustentabilidade. Uma das tecnologias promissoras que pode ter um papel importante nesse cenário é o aprendizado de máquina (machine learning), especialmente no que diz respeito à avaliação da saúde das plantas. Neste contexto, o objetivo do trabalho foi classificar plantas saudáveis e inoculadas com patógeno utilizando quatro diferentes técnicas de machine learning: Análise Discriminante, Regressão Logística, AdaBoost, um algoritmo de boosting, que combina múltiplos classificadores fracos para formar um classificador mais preciso, e SVM (Support Vector Machine), que é um algoritmo que separa os dados usando um hiperplano. Para esse propósito, foram utilizados dados coletados de três técnicas distintas: Fluorcam, Espectroscopia induzida por laser (LIFS) e Câmera Térmica. No âmbito computacional, diferentes modelos foram treinados e testados para cada equipamento. Os resultados revelaram que a melhor taxa de acerto foi obtida com os dados de imagem de fluorescência fornecidos pelo equipamento Fluorcam, alcançando uma taxa de acerto de 75% utilizando o modelo SVM. Para o LIFS, a taxa de acerto foi maior, atingindo 80% também utilizando o modelo SVM. Já para os dados de termografia a taxa de acerto foi de 90% utilizando o AdaBoost. Esses resultados evidenciam a relevância e o potencial do uso do machine learning na classificação de plantas inoculadas, especialmente quando combinado com tecnologias específicas. A partir desses resultados, conclui-se que o desenvolvimento de soluções usando machine learning pode contribuir significativamente para o monitoramento e aprimoramento da detecção do ataque de patógenos na planta, impulsionando assim a eficiência e a sustentabilidade da agricultura.
Publication year: 2023
Types of publication: Abstract in annals or event proceedings
Unit: Embrapa Instrumentation
Keywords: Classificação, Detecção de doenças, Machine learning
Observation
Some of Embrapa's publications are published as ePub files. To read them, use or download one of the following free software options to your computer or mobile device. Android: Google Play Books; IOS: iBooks; Windows and Linux: Calibre.
Access other publications
Access the Agricultural Research Database (BDPA) to consult Embrapa's full library collection and records.
Visit Embrapa Bookstore to purchase books and other publications sold by Embrapa.