Mapeamento digital dos teores de Fe2O3, MnO, Nb e TiO2 em Morro dos Seis Lagos - AM, Brasil.

Informe múltiplos e-mails separados por vírgula.

imagem

Autoria: RODRIGUES, N. B.; SILVA, J. C. L. da; SILVA, R. P. M. da; PINHEIRO, H. S. K.; CARVALHO JUNIOR, W. de

Resumo: Conceitos em pedometria e técnicas de Machine Learning são cada vez mais utilizados na execução de levantamentos de solos, empregando procedimentos de mapeamento digital de solos. O objetivo do estudo foi avaliar o desempenho de modelos Multivariate Adaptive Regression Spline (MARS), Radial Support Vector Machine (SVMRadial) e Random Forest (RF), para predição espacial de Fe2O3, MnO, Nb e TiO2, em Morro dos Seis Lagos-AM, Brasil. A metodologia consistiu em: Revisão bibliográfica; Compilação dos dados geoquímicos; Tratamento e análise dos dados (input data); Seleção de covariáveis; Aplicação de algoritmos para predição de elementos; Obtenção dos mapas, análise dos resultados e interpretações. Os resultados demonstraram maior acurácia para a predição de teores de óxido de ferro (Fe2O3), manganês (MnO) e nióbio (Nb) com o modelo RF, já para titânio (TiO2), melhor desempenho foi observado com o modelo SVMRadial. As covariáveis morfométricas foram mais relevantes do que covariáveis derivadas de índices espectrais.

Ano de publicação: 2024

Tipo de publicação: Artigo de periódico

Unidade: Embrapa Solos

Observações

1 - Por padrão são exibidas publicações dos últimos 20 anos. Para encontrar publicações mais antigas, configure o filtro ano de publicação, colocando o ano a partir do qual você deseja encontrar publicações. O filtro está na coluna da esquerda na busca acima. 

2 - Para ler algumas publicações da Embrapa (apenas as que estão em formato ePub), é necessário ter, no celular ou computador, um desses softwares gratuitos. Sistemas Android: Google Play Livros; IOS: iBooks; Windows e Linux: software Calibre.

 


Acesse outras publicações

Acesse a Base de Dados da Pesquisa Agropecuária (BDPA) para consultar o acervo completo das bibliotecas da Embrapa.