Land-cover classification in the Brazilian Amazon with the integration of Landsat ETM + and Radarsat data.

Enter multiple e-mails separated by comma.

imagem

Author(s): LU, D.; BATISTELLA, M.; MORAN, E.

Summary: Land-cover classification with remotely sensed data in moist tropical regions in a challenge due to the complex biophysical conditions. This paper explores techniques to improve land-cover classification accuracy through a comparative analysis of different combinations of spectral signatures and textures from Landsat Enhanced Thematic Mapper Plus (ETM +) and Radarsat data. A wavelet-merging technique was used to integrate Landsat ETM + multispectral and panchromatic data or Radarsat data. Grey-level co-occurrence matrix (GLCM) textures based on Landsat ETM + panchromatic of Radarsat data and different sizes of moving windows were examined. A maximum-likelihood classifier was used to implement image classification for different combinations. This research indicates the important role of textures in improving land-cover classification accuracies in Amazonian environments. ...

Publication year: 2007

Types of publication: Journal article

Observation

Some of Embrapa's publications are published as ePub files. To read them, use or download one of the following free software options to your computer or mobile device. Android: Google Play Books; IOS: iBooks; Windows and Linux: Calibre.

 


Access other publications

Access the Agricultural Research Database (BDPA) to consult Embrapa's full library collection and records.
Visit Embrapa Bookstore to purchase books and other publications sold by Embrapa.