A comparative analysis of attribute reduction algorithms applied to wet-blue leather defects classification.

Enter multiple e-mails separated by comma.

imagem

Author(s): AMORIM, W. P.; PISTORI, H.; JACINTO, M. A. C.

Summary: This paper presents an attribute reduction comparative study on four linear discriminant analysis techniques: FisherFace, CLDA, DLDA and YLDA. The attribute reduction has been applied to the problem of leather defect c1assification using four different c1assifiers: C4.5, KNN, Naive Bayes and Support Veetor Machines. Results and analyses on the performance of correct c1assification rates as the number of attributes were reduced are reported.

Publication year: 2009

Observation

Some of Embrapa's publications are published as ePub files. To read them, use or download one of the following free software options to your computer or mobile device. Android: Google Play Books; IOS: iBooks; Windows and Linux: Calibre.

 


Access other publications

Access the Agricultural Research Database (BDPA) to consult Embrapa's full library collection and records.
Visit Embrapa Bookstore to purchase books and other publications sold by Embrapa.