Genetic evaluation for large data sets by random regression models in Nellore cattle.

Informe múltiplos e-mails separados por vírgula.

imagem

Autoria: NOBRE, P. R. C.; ROSA, A. do N.; SILVA, L. O. C. da

Resumo: Expected progeny differences (EPD) of Nellore cattle estimated by random regression model (RRM) and multiple trait model (MTM) were compared. Genetic evaluation data included 3,819,895 records of up nine sequential weights of 963,227 animals measured at ages ranging from one day (birth weight) to 733 days. Traits considered were weights at birth, ten to 110-day old, 102 to 202-day old, 193 to 293-day old, 283 to 383-day old, 376 to 476-day old, 551 to 651-day old, and 633 to 733-day old. Seven data samples were created. Because the parameters estimates biologically were better, two of them were chosen: one with 84,426 records and another with 72,040. Records preadjusted to a fixed age were analyzed by a MTM, which included the effects of contemporary group, age of dam class, additive direct, additive maternal, and maternal permanent environment. Analyses were carried out by REML, with five traits at a time. The RRM included the effects of age of animal, contemporary group, age of dam class, additive direct, permanent environment, additive maternal, and maternal permanent environment. Different degree of Legendre polynomials were used to describe random effects. MTM estimated covariance components and genetic parameters for weight at birth and sequential weights and RRM for all ages. Due to the fact that correlation among the estimates EPD from MTM and all the tested RM were not equal to 1.0, it is not possible to recommend RRM to genetic evaluation to large data sets.

Ano de publicação: 2009

Tipo de publicação: Artigo de periódico

Observações

1 - Por padrão são exibidas publicações dos últimos 20 anos. Para encontrar publicações mais antigas, configure o filtro ano de publicação, colocando o ano a partir do qual você deseja encontrar publicações. O filtro está na coluna da esquerda na busca acima. 

2 - Para ler algumas publicações da Embrapa (apenas as que estão em formato ePub), é necessário ter, no celular ou computador, um desses softwares gratuitos. Sistemas Android: Google Play Livros; IOS: iBooks; Windows e Linux: software Calibre.

 


Acesse outras publicações

Acesse a Base de Dados da Pesquisa Agropecuária (BDPA) para consultar o acervo completo das bibliotecas da Embrapa.