Redes neurais artificiais na classificação de áreas cafeeiras da região de Guaxupé.

Enter multiple e-mails separated by comma.

imagem

Author(s): ANDRADE, L. N. de; VIEIRA, T. G. C.; LACERDA, W. S.; ALVES, H. M. R.; VOLPATO, M. M. L.; BRAGA, R. C. A.; SOUZA, V. C. O. de

Summary: A cultura cafeeira tem o padrão espectral muito próximo ao da mata, dificultando a classificação automática dessas classes uso da terra. A aplicação de Redes Neurais Artificiais (RNA) na classificação de dados de Sensoriamento Remoto tem se mostrado uma abordagem promissora na discriminação de classes de maior complexidade. No presente trabalho foram utilizadas três bandas espectrais da imagem do satélite SPOT da região de Guaxupé, MG. O software utilizado para o processamento das imagens e classificação foi o IDRISI. Este trabalho visa à avaliação do uso de RNA para classificação automática de áreas cafeeiras em imagens de alta resolução espectral. Para validação dos mapas obtidos pela classificação, realizou-se o cruzamento do mapa de uso e ocupação da terra por classificação visual com o gerado pela RNA. Em relação ao mapa de referência, o índice Kappa (k) do mapa classificado pela RNA ficou em 71,85%, é considerado um índice bom. A metodologia de redes neurais artificiais multilayer perceptron (MLP) apresentou um bom resultado, porém é necessário que se utilize outros dados de entrada para a RNA, uma vez que somente as bandas espectrais não são suficientes para uma classificação otimizada.

Publication year: 2009

Types of publication: Paper in annals and proceedings

Observation

Some of Embrapa's publications are published as ePub files. To read them, use or download one of the following free software options to your computer or mobile device. Android: Google Play Books; IOS: iBooks; Windows and Linux: Calibre.

 


Access other publications

Access the Agricultural Research Database (BDPA) to consult Embrapa's full library collection and records.
Visit Embrapa Bookstore to purchase books and other publications sold by Embrapa.