Identificação automática de áreas cafeeiras em imagens de satélite utilizando redes neurais artificiais.

Enter multiple e-mails separated by comma.

imagem

Author(s): ANDRADE, L. N.; VIEIRA, T. G. C.; LACERDA, W. S.; DAVIS JUNIOR, C. A.; VOLPATO, M. L. M.; ALVES, H. M. R.

Summary: A cafeicultura é atividade de fundamental importância na região sul de Minas Gerais e técnicas de estimativa da área plantada, visando previsões de safra confiáveis, estão sendo intensamente pesquisadas. Neste sentido, o presente estudo apresenta uma aplicação de Redes Neurais Artificiais (RNA) para a classificação automática de dados de sensoriamento remoto, com o objetivo de identificar áreas cafeeiras da região de Machado, MG. A região apresenta relevo ondulado a forte ondulado, o que acarreta maior dificuldade do mapeamento automático do uso da terra a partir de imagens de satélite. Outro complicador é a alta similaridade do padrão espectral do café e áreas de mata nativa. A área foi dividida entre os relevos plano e acidentado, e foram criadas máscaras na drenagem e na área urbana. O resultado da classificação feita pela RNA foi superior aos resultados encontrados na literatura, que utilizam classificadores automáticos clássicos, como o Battacharya e o Maxver. O Kappa do mapa classificado pela RNA foi de 55,84% para o relevo mais movimentado e 60,29% para o relevo menos movimentado.

Publication year: 2010

Types of publication: Paper in annals and proceedings

Observation

Some of Embrapa's publications are published as ePub files. To read them, use or download one of the following free software options to your computer or mobile device. Android: Google Play Books; IOS: iBooks; Windows and Linux: Calibre.

 


Access other publications

Access the Agricultural Research Database (BDPA) to consult Embrapa's full library collection and records.
Visit Embrapa Bookstore to purchase books and other publications sold by Embrapa.