Aplicação da técnica de Text Mining e espacialização de informações sócio-econômicas em sistemas objetivos de previsão de safra para a região da bacia hidrográfica do Pantanal.

Informe múltiplos e-mails separados por vírgula.

imagem

Autoria: VENDRUSCULO, L. G.; MARIN, F. R.; PILAU, F. G.; PACHECO, L. R. F.

Resumo: Vários estudos acadêmicos e esforços governamentais têm sido empreendidos para predizer, com confiança, a área plantada e a produtividade, no intuito de estimar oficialmente as safras agrícolas brasileiras. A estimativa oficial é baseada em levantamentos sistemáticos, por município, com informação colhida através de entrevistas em estabelecimentos rurais e outros setores organizados da sociedade. É importante, contudo, que outros fatores sejam considerados para a consolidação dos números regionais,estaduais e nacionais, especialmente, os fenômenos climáticos, condições para o manejo das lavouras, ocorrência generalizada de pragas e doenças. Sob esta ótica, presente estudo apresenta a técnica de mineração de textos para incorporação de fatores sócio-econômicos no processo de previsão de safras. Estes fatores foram analisados no contexto de notícias jornalísticas por meio do software Eurekha, que possibilitou formar agrupamentos com índice de similaridades aceitáveis.

Ano de publicação: 2006

Tipo de publicação: Artigo em anais e proceedings

Observações

1 - Por padrão são exibidas publicações dos últimos 20 anos. Para encontrar publicações mais antigas, configure o filtro ano de publicação, colocando o ano a partir do qual você deseja encontrar publicações. O filtro está na coluna da esquerda na busca acima. 

2 - Para ler algumas publicações da Embrapa (apenas as que estão em formato ePub), é necessário ter, no celular ou computador, um desses softwares gratuitos. Sistemas Android: Google Play Livros; IOS: iBooks; Windows e Linux: software Calibre.

 


Acesse outras publicações

Acesse a Base de Dados da Pesquisa Agropecuária (BDPA) para consultar o acervo completo das bibliotecas da Embrapa.