Predição simultânea dos efeitos de marcadores moleculares e seleção genômica ampla em cajueiro.

Enter multiple e-mails separated by comma.

imagem

Author(s): CAVALCANTI, J. J. V.; RESENDE, M. D. V. de; SANTOS, F. H. C. dos; PINHEIROS, C. R.

Summary: A seleção genômica ampla (genome wide selection - GWS) foi proposta como uma forma de aumentar a eficiência e acelerar o melhoramento genético, enfatizando a predição simultânea dos efeitos genéticos de grande número de marcadores genéticos de DNA dispersos em todo o genoma de um organismo, de forma a capturar os efeitos de todos os locos e explicar a variação genética de um caráter quantitativo. Objetivou-se com o presente trabalho aplicar o princípio da GWS no melhoramento do cajueiro, estimando simultaneamente os efeitos de 238 marcadores avaliados em 74 indivíduos de uma família de irmãos completos, visando a explicar grande porcentagem da variação genotípica total do caráter peso da amêndoa e a aumentar a eficiência do melhoramento do cajueiro. Verificou-se que a capacidade preditiva e a acurácia são praticamente maximizadas na análise com 70 marcadores de maiores efeitos. O aumento do número de marcadores não aumenta linearmente a acurácia da GWS pelo método RR-BLUP. Os 70 marcadores de maiores efeitos capturam 74% da variação genotípica total e propiciam alta acurácia seletiva (86%) da seleção para o peso de amêndoas, enquanto os cinco marcadores de maiores efeitos capturam apenas 19% da variação genotípica total e propiciam acurácia seletiva de apenas 44%. Assim, a seleção assistida (MAS), baseada em poucos (cinco) marcadores de efeitos significativos, propicia eficiência muito inferior à GWS. Os valores genéticos genômicos preditos na população de validação cruzada aproximam-se bem dos valores fenotípicos observados, com correlação de 0,79. A estimação simultânea dos efeitos dos marcadores, segundo o conceito da GWS, é uma alternativa interessante, visando a aumentar a eficiência do melhoramento do cajueiro.

Publication year: 2012

Types of publication: Journal article

Observation

Some of Embrapa's publications are published as ePub files. To read them, use or download one of the following free software options to your computer or mobile device. Android: Google Play Books; IOS: iBooks; Windows and Linux: Calibre.

 


Access other publications

Access the Agricultural Research Database (BDPA) to consult Embrapa's full library collection and records.
Visit Embrapa Bookstore to purchase books and other publications sold by Embrapa.