Persistency of lactation using random regression models and different fixed regression modeling approaches.

Informe múltiplos e-mails separados por vírgula.

imagem

Autoria: COBUCI, J. A.; COSTA, C. N.

Resumo: Milk yield test-day records on the first three lactations of 25,500 Holstein cows were used to estimate genetic parameters and predict breeding values for nine measures of persistency and 305-d milk yield in a random regression animal model using two criteria to define the fixed regression. Legendre polynomials of fourth and fifth orders were used to model the fixed and random regressions of lactation curves. The fixed regressions were adjusted for average milk yield on populations (single) or subpopulations (multiple) formed by cows that calved at the same age and in the same season. Akaike Information (AIC) and Bayesian Information (BIC) criteria indicated that models with multiple regression lactation curves had the best fit to test-day milk records of first lactations, while models with a single regression curve had the best fit for the second and third lactations. Heritability and genetic correlation estimates between persistency and milk yield differed significantly depending on the lactation order and the measures of persistency used. These parameters did not differ significantly depending on the criteria used for defining the fixed regressions for lactation curves. In general, the heritability estimates were higher for first (0.07 to 0.43), followed by the second (0.08 to 0.21) and third (0.04 to 0.10) lactation. The rank of sires resulting from the processes of genetic evaluation for milk yield or persistency using random regression models differed according to the criteria used for determining the fixed regression of lactation curve.

Ano de publicação: 2012

Tipo de publicação: Artigo de periódico

Observações

1 - Por padrão são exibidas publicações dos últimos 20 anos. Para encontrar publicações mais antigas, configure o filtro ano de publicação, colocando o ano a partir do qual você deseja encontrar publicações. O filtro está na coluna da esquerda na busca acima. 

2 - Para ler algumas publicações da Embrapa (apenas as que estão em formato ePub), é necessário ter, no celular ou computador, um desses softwares gratuitos. Sistemas Android: Google Play Livros; IOS: iBooks; Windows e Linux: software Calibre.

 


Acesse outras publicações

Acesse a Base de Dados da Pesquisa Agropecuária (BDPA) para consultar o acervo completo das bibliotecas da Embrapa.