A compact miniaturized flow system based on low-temperature co-fired ceramic technology coupled to led mini-photometer for determination of dipyrone in pharmaceutical formulations.

Enter multiple e-mails separated by comma.

imagem

Author(s): SUAREZ, W. T.; PESSOA NETO, O. D.; SANTOS, V. B. dos; NOGUEIRA, A. R. de A.; FARIA, R. C.; FATIBELLO-FILHO, O.; CHAMARRO, J. A.

Summary: In this work, an analytical microsystem based on LTCC (low-temperature co-fired ceramic) technology with monolithic incorporation of an optical flow cell for determination of dipyrone in pharmaceuticals is described. The detection system is based on the formation of a blue chromophore between dipyrone and Fe(III) photometrically monitored at 630 nm using a lab-made LED mini-photometer constructed with a light emitting diode as a radiation source and a Si photodiode as a detector. The lab-made mini-photometer elaborated presented a good performance in regard to high signal/noise ratio, low drift and good sensitivity. The analytical curve was linear in the dipyrone concentration range from 1.0 × 10-4 to 3.5 × 10-3 mol L-1, limit of detection of 4.5 × 10-5 mol L-1 and total time of analyses of 20 s yielding an analytical frequency of 195 h-1 with a low waste generation per analysis (480 µL).

Publication year: 2013

Types of publication: Journal article

Observation

Some of Embrapa's publications are published as ePub files. To read them, use or download one of the following free software options to your computer or mobile device. Android: Google Play Books; IOS: iBooks; Windows and Linux: Calibre.

 


Access other publications

Access the Agricultural Research Database (BDPA) to consult Embrapa's full library collection and records.
Visit Embrapa Bookstore to purchase books and other publications sold by Embrapa.