Seleção genômica ampla para curvas de crescimento.
Seleção genômica ampla para curvas de crescimento.
Autoria: SILVA, F. F.; ROCHA, G. S.; RESENDE, M. D. V. de; GUIMARÃES, S. E. F.; PETERNELLI, L. A.; DUARTE, D. A. S.; AZEVEDO, C.
Resumo: Foi proposta uma metodologia para avaliação genética de curvas de crescimento considerando-se informações de marcadores SNPs (Single Nucleotide Polymorphisms). Em um primeiro passo foram ajustados modelos de crescimento não lineares (logístico) aos dados de peso-idade de cada animal, e em um segundo passo as estimativas dos parâmetros de tais modelos foram consideradas como fenótipos em um modelo de regressão (LASSO Bayesiano ? BL) cujas covariáveis foram os genótipos dos marcadores SNPs. Este enfoque possibilitou estimar os valores genéticos genômicos (GBV) para peso em qualquer tempo da trajetória de crescimento, refletindo na confecção de curvas de crescimento genômicas, as quais permitiram a identificação de grupos de indivíduos geneticamente superiores em relação à eficiência de crescimento. Os dados simulados utilizados neste estudo foram constituídos de 2000 indivíduos (1000 na população de treinamento e 1000 na população de validação) contendo 453 marcadores SNPs distribuídos sobre cinco cromossomos. Os resultados indicaram a alta eficiência do método BL em predizer GBVs da população de validação com base na população de treinamento (coeficientes de correlação variaram entre 0,79 e 0,93), bem como a alta eficiência na detecção de QTLs, uma vez que os marcadores com maiores efeitos estimados encontravam-se em posições dos cromossomos próximas àquelas nas quais se encontravam os verdadeiros QTLs postulados na simulação.
Ano de publicação: 2013
Tipo de publicação: Artigo de periódico
Unidade: Embrapa Florestas
Palavras-chave: Bayesian LASSO, Dados longitudinais, LASSO bayesiano, Longitudinal data, Melhoramento genético, SNP
Observações
1 - Por padrão são exibidas publicações dos últimos 20 anos. Para encontrar publicações mais antigas, configure o filtro ano de publicação, colocando o ano a partir do qual você deseja encontrar publicações. O filtro está na coluna da esquerda na busca acima.
2 - Para ler algumas publicações da Embrapa (apenas as que estão em formato ePub), é necessário ter, no celular ou computador, um desses softwares gratuitos. Sistemas Android: Google Play Livros; IOS: iBooks; Windows e Linux: software Calibre.
Acesse outras publicações
Acesse a Base de Dados da Pesquisa Agropecuária (BDPA) para consultar o acervo completo das bibliotecas da Embrapa.