One-way-ness in the input-saving (Turing) machine.

Enter multiple e-mails separated by comma.

imagem

Author(s): CASTRO, A. de

Summary: Currently, a complexity-class problem is proving the existence of one-way permutations: one-to-one and onto maps that are computationally ?easy?, while their inverses are computationally ?hard?. In what follows, we make use of Bennett?s algorithm of the reversible Turing machine (quantum information heat engine) to perform a cascade of two controlled-NOT gates to physically create a permutation operation. We show that by running this input-saving (Turing) machine backwards the critical inequality of Landauer?s thermodynamic limit is reversed, which provokes the symmetry-breaking of the quantum circuit based on two successive controlled-NOT quantum gates. This finding reveals that a permutation of controlled-NOT gates becomes one-way, provided that adiabatically immersed in a heat bath, which determines the condition of existence of a thermodynamically non-invertible bijection in polynomial-time, that would otherwise be mathematically invertible. This one-way bijection can also be particularly important because it shows nonlinearities in quantum mechanics, which are detectable by watching that the mathematical reversibility of controlled-NOT gates does not work physically.

Publication year: 2014

Types of publication: Journal article

Observation

Some of Embrapa's publications are published as ePub files. To read them, use or download one of the following free software options to your computer or mobile device. Android: Google Play Books; IOS: iBooks; Windows and Linux: Calibre.

 


Access other publications

Access the Agricultural Research Database (BDPA) to consult Embrapa's full library collection and records.
Visit Embrapa Bookstore to purchase books and other publications sold by Embrapa.