Identificação de Pontos Perceptualmente Importantes (PIP) em séries temporais de tópicos extraídos de dados textuais.
Identificação de Pontos Perceptualmente Importantes (PIP) em séries temporais de tópicos extraídos de dados textuais.
Author(s): RODRIGUES, L. S.; SINOARA, R. A.; REZENDE, S. O.; MARCACINI, R. M.; MOURA, M. F.
Summary: Neste trabalho é apresentado um módulo computacional denominado PIPC (PIP Classification) que permite identificar Pontos Perceptualmente Importantes (PIP) em séries temporais. O módulo foi desenvolvido para apoiar o projeto Compilação e Recuperação de Informações Técnico-científicas e Indução ao Conhecimento (CRITIC@), permitindo identificar os pontos relevantes da evolução temporal de um tópico extraído dos textos, identificar documentos textuais que possam auxiliar a interpretar tais pontos, bem como classificar a formação de próximos PIPs nas séries temporais. Foram realizados testes do módulo a partir de notícias sobre produção de milho no Brasil, e os resultados preliminares de avaliação do módulo são promissores.
Publication year: 2015
Types of publication: Paper in annals and proceedings
Observation
Some of Embrapa's publications are published as ePub files. To read them, use or download one of the following free software options to your computer or mobile device. Android: Google Play Books; IOS: iBooks; Windows and Linux: Calibre.
Access other publications
Access the Agricultural Research Database (BDPA) to consult Embrapa's full library collection and records.
Visit Embrapa Bookstore to purchase books and other publications sold by Embrapa.